geologic history meaning in Chinese
地史
地质历史
Examples
- We know it reverses ; it reverses throughout geologic history
我们知道它翻转;在整个地质的历史上它翻转。 - Tectonic - lithogenic - mineralogenetic epoch and its geologic history evolution indicate that intracontinental rifting stage ( t3 ~ e1 ) is the main metallogenic period of the jiangda tectonic belt
构造-成岩-成矿定年与地史演化研究表明,江达构造带主成矿期为陆内裂谷期。 - Aad , it is due to the complicated geological structural environment resulted from the separation , merging , collision of plates which consists of land nucleus in geologic history , and it results in the multiple cyclic state of china s land nucleus development
而造成中国油气地质条件的复杂性的地质构造环境,则是在地史中各陆核组成的板块之间分合和碰撞,使得中国陆核的发展呈多旋回状态。 - Based on the analyses of the diversity of shape and structure of tarsometatarsus of living birds and its corresponding function , we can study the shape and habit of birds in the early stages , at the same time can discuss the evolutive law of functional behavior of birds in the different periods of the geologic history further too
特别是通过对现生鸟类跗跖骨形态结构多样性与对应功能的分析,可以此作为研究早期鸟类形态习性的参考依据,同时也可进一步探讨不同地质历史时期鸟类功能行为的演化规律。 - Based on modern optimization theory and optimal control theory , this dissertation studies some questions as follows : 1 . the optimization model of parameter identification of three - dimensional geologic history numerical simulation , algorithm and its application geologic history numerical simulation is a basic content of basin numerical simulation , and the porosity is the major parameter in the evolution and development process of oil - bearing basin . according to the sedimentation and burial mechanism , the physical and chemical principles of oil geology , the mudstone porosity ' s non - linear parabolic partial differential equation has been established
本文应用现代最优化及最优控制理论,对如下一些问题进行了研究: 1 、三维地史数值模拟的参数辨识优化模型、算法及应用地史模拟是盆地数值模拟的一个基础性的研究内容,地层孔隙度是含油气盆地地史演化发育过程中的重要参数,根据地层沉积埋藏机理和石油地质的物理化学原理,通过引入数学物理方程概念,建立了泥岩三维孔隙度场方程,根据问题的特点,给出了方程的定解条件,对方程的动边界也给出了处理方法,并且证明了解的存在性与惟一性,在此基础上建立了以当今实测数据为拟合准则的三维地史数值模拟的参数辨识优化模型,这是一个含有二阶偏微分方程约束的泛函极值问题。